Exploring the psychometric properties of computational thinking assessment in introductory programming
[bookmark: _GoBack]Yeni Anistyasari*, Ekohariadi, Munoto, IGP Asto Buditjahjanto
Universitas Negeri Surabaya, Indonesia
yenian@unesa.ac.id
Abstract
Computational thinking is considered as the skill of 21st century. The fundamental CT concepts include abstraction, algorithm design, decomposition, pattern recognition, and data representation or generalization. Computational thinking assessment is required to improve the understanding of the cognitive abilities and to relate them in related areas, such as computer science. A basic course of computer science is Introductory Programming. Assessing computational thinking skills however is a challenging issue since it measures latent variables that cannot be directly observed. According to psychometrics, appropriate test requires a validation process before it can be effectively used as a measuring instrument. The objective of this work is to determine the psychometric properties (item validity, reliability, discrimination, difficulty, and distractors) of the developed multiple choice questions of computational thinking in introductory programming by exploring classical test theory which has not been deeply investigated by previous works. The analysis results reveal that most of items are valid and the items are generally adequate reliable. However, some items are suggested to be revised since the item discrimination values, the distribution of difficulties, and distractor points are less than expected threshold.
Keywords
Classical test theory, computational thinking, introductory programming, psychometric
Introduction
Many educators have highlighted that computational thinking is considerable as the skill of 21st century (Tabesh, 2017) which is a fundamental skill for everyone, not just for computer scientists. Wing (2006) emphasizes that computational thinking (CT) should also be added to the reading, writing and arithmetical processes for the analytical skills of every child. It exploits of extraction and decomposition for a great complex systems or problems. It selects a representation to solve a problem or a model for the problem. Furthermore, CT is a method of problem solving, system designing and recognizing the human behaviors by drawing attention to the basic concepts of the science of computer. Wing (2008) claimed that CT complements thinking in mathematics and engineering with a focus on designing systems to solve composite problems. The fundamental CT concepts include, abstractions (the mental tools of computing, necessary to solve the problem), layers (problems need to be solved on different levels) and relationships between layers and abstractions. According to Wing (2006) and Wing (2008) CT concepts are simply include abstraction, algorithm design, decomposition, pattern recognition, and data representation or generalization.
Several studies have conducted the relations between cognitive processes (the pedagogy of programming) and the perceived levels of difficulty of CT skills (L D Miller, Soh, Ingraham, & Shell, 2014; L Dee Miller et al., 2013; Román-González, Pérez-González, & Jiménez-Fernández, 2017; Selby, 2015). The order of teaching programming is well-known as (1) constructs, facts, types; (2) how individual constructs work; (3) use programming constructs in contrived contexts; (4) discriminate, decompose, abstract; (5) create programs, algorithm design; (6) test, evaluate (Selby, 2015). The perceived difficulties, with 1 being the easiest computational thinking skill to master and 6 being the most difficult are (1) pattern recognition; (2) algorithm design; (3) data representation or generalisation; (4) data abstraction; and (5) decomposition (Selby, 2015). In addition, Bloom’s revised taxonomy are remembering, understanding, applying, analyzing, evaluating, and creating. Selby (2015) has modeled the relations between programming pedagogy and computational thinking skills. However, the model exploited the old version of Bloom’s Taxonomy.
On the other hand, CT assessment and measurement are required to improve the understanding of the cognitive abilities and to relate them in related areas, such as math, science, engineering, and computer science. Assessing CT abilities nevertheless is a challenging issue since it measures latent variables that cannot be directly observed. Tests of coding problems are the most popular objects to assess CT abilities. Tests are sets of objective questions designed to measure the respondents’ knowledge. Up to now, there is a limited validated and widely accepted approach to create tests to assess CT abilities. According to psychometrics, appropriate testing requires a validation process before it can be effectively used as a measuring instrument (Araujo, Santos, Andrade, Guerrero, & Dagiene, 2017).
Psychometric theory offers two approaches in analyzing data tests which are Classical test theory (CTT) and item response theory (IRT). These approaches facilitate to predict results of psychological tests by identifying parameters of item discrimination, difficulty, and distractors. In addition, they enhance the reliability and validity of psychological tests which provide measures of validity and reliability (Magno, 2009). The main advantage of CTT is the estimation of the measured attribute is presented simply by adding the scored responses to items. CTT excludes truly latent variables. However, the true score is not empirically observable, it can be defined operationally as the average score on the infinite number of equivalent repetitions of the measurement process (Progar & Sočan, 2008).
The objective of this work is to determine the psychometric properties (item validity, reliability, discrimination, difficulty, and distractors) of the developed CT test in introductory programming. The contributions of this work is to patch the gap about psychometric analysis for CT assessment in introductory programming by exploring CTT which up to now has not been deeply investigated by other scholars.
Literature review
Computational Thinking
Computational thinking is a universal skill in life; it is no longer just a stereotypical impression of the skills needed by computer scientists. Everyone must have a positive attitude in understanding and using these skills in everyday life (Wing, 2006). The ability and limitations of computational thinking are based on computational processing, regardless of whether the thoughts of people or computers are used to process problems. At the initial learning stage, children should not only be trained in calistung abilities (reading, writing, and counting), but also must be taught how to apply computational thinking into practice and how to do logical analysis (Wing, 2006). There are four operational computational thinking skills, namely simplifying, embedding, changing, and simulating. To turn problems into easy-to-understand problems (Wing, 2006), computational thinking uses basic concepts of computer science to solve problems, design systems, and turn them into modes of thinking that can be understood by humans (Wing, 2006)). Simultaneously, computational thinking makes it possible to adopt modes of thinking that are similar to computer scientists when facing problems.
Wing (2008) further defines computational thinking as (1) a conceptualization rather than the process of developing a programming language. Therefore, students are asked to apply various layers of abstract thinking. Computational thinking is not limited to using computers for learning (Wing, 2008); (2) logical processes are preferred over repetitive behavior of mechanical operations. Therefore, people can be more flexible in using their own expertise through computational thinking; (3) human thinking, not computer calculation mode. In other words, thinking computing is a way to solve human problems, not just copying computer thinking modes, because humans are smarter and more imaginative than computers (Wing, 2008); (4) a combination of mathematical thinking and technical thinking to expand the foundation of mathematics; (5) finished thinking products, which help solve problems in life, manage daily life behaviors and communication and interaction skills with others; and (6) basic skills in everyday life, not abstract philosophy.
Classical Test Theory
CTT starts with the notion of the true value of a variable, e.g. xtrue. CTT assumes that the true values of variable x in a population of interest follow a normal (or ‘Gaussian’) distribution. Let us denote the population mean by and the population standard deviation true. Using the notation introduced above, we can therefore write that the distribution of the true value for a population of participants will be:

	D(xtrue) = G1(,true)	… (1)

The population values (and true, also called parameters) are different from those which we measure in a sample ( and s) due to sampling error. Classical test theory is concerned with how the measured (i.e. observed) values of x will be related to the true values xtrue. CTT proposes that the observed values are a combination of the true values plus a random measurement error component. By stressing random error, CTT is making 3 assumptions about the error component (1) The error component will have zero mean and so the observed mean will not be systematically distorted away from the true value by the error (this contrasts with a systematic bias effect which would distort the observed mean away from its true value); (2) The measurement errors are assumed to follow a normal distribution; (3) The measurement errors are uncorrelated with the true values. Therefore, according to CTT, we can write the following expression for the distribution of xobs:
	D(xobs) = D(xtrue) + G2(0, err)	…(2)
where err is the standard deviation of the normal random error term. For an individual (ith) participant we could also write the following expression for their observed score on variable x:-
	xi = xi,true + 2i	… (3)
where xi,true denotes the value of xtrue for participant i, drawn from the true value distribution G1(,true), and 2i denotes the error term for the ith participant, drawn from the error distribution G2(0, err).
It follows from these assumptions that the expected value of the sample mean, Exp{} is . Also, the sample standard deviation of observed x is going to be larger than true as the random error component (with a standard deviation of err) increases the variation in xobs. In fact, it is easy to work out the expected sample variance exactly. Imagine one has two variables a and b, and a variable c which is the sum of a and b (i.e., a + b). The variance of the new variable c is given by:
	Var (c) = Var (a) + Var (b) + 2rab*√[Var(a) * Var(b)]	… (4)
	or 2c= a2 + b2 + 2rab*√ [a2 *b2]
where rab is the correlation between a and b
We can use the general formula given in (4) to evaluate the expected sample variance according to CTT, as the observed values are the sum of the true values and random measurement error. Using ‘true’ and ‘error’ instead of ‘a’and ‘b’, the expected value of the sample variance is just the sum of the variances of the true score and error terms:
		Exp{s2} = true2 + err2	… (5)

Methods
A test of introductory programming with Phyton language programming is constructed by two lecturers who specialized in teaching introductory programming in computer science. The tests are composed of 70 items in the form of multiple choice questions with five options. The items in the introductory programming test cover cognitive skills on remembering (10 items), understanding (10 items), applying (15 items), analyzing (15 items), evaluating (10 items), and creating (10 items). The content area includes (1) elements of programming; (2) functions and modules; (3) object-oriented programming; (4) algorithms and data structures.
The 70 items are adiministered to 56 selected first-year university students of computer science. During the test, the students are provided 90 minutes to complete the test to the best of their ability.
Within the CTT framework the following parameters were computed: (1) item discrimination parameter as the corrected point-biserial correlation; (2) item difficulty parameters as the proportion of correct responses to particular items; (3) alpha reliability coefficient and the greatest lower bound to reliability (GLBR).
Results and Discussion
Validity analysis
Validity analysis utilizes Test Analysis Program (TAP) to determine the validity of item. The results is indicated by point biserial value. The point biserial is compared to rtable with significance level is 5%. According to significance level (5%) of 154 students, the validity coefficient in rtable is approximately 0.13. This is to say, an item is valid if the point biserial is equal or greater than 0.13, otherwise it is invalid. The item validity analysis is listed in Table 1. The valid items are about 84% and the remaining is invalid.
Table 1. Validity analysis results

	Item Number
	Point Biserial
	Validity
	Item Number
	Point Biserial
	Validity

	1
	0.2
	Valid
	36
	0.44
	Valid

	2
	0.55
	Valid
	37
	0.44
	Valid

	3
	0.34
	Valid
	38
	-0.19
	Invalid

	4
	0.33
	Valid
	39
	0.18
	Valid

	5
	0.45
	Valid
	40
	0.43
	Valid

	6
	0.2
	Valid
	41
	0.37
	Valid

	7
	0.25
	Valid
	42
	-0.03
	Invalid

	8
	0.13
	Valid
	43
	0.2
	Valid

	9
	-0.19
	Invalid
	44
	0.34
	Valid

	10
	-0.05
	Invalid
	45
	0.14
	Valid

	11
	0.33
	Valid
	46
	-0.38
	Invalid

	12
	0.23
	Valid
	47
	0.14
	Valid

	13
	0.17
	Valid
	48
	0.43
	Valid

	14
	-0.03
	Invalid
	49
	0.44
	Valid

	15
	-0.17
	Invalid
	50
	0.15
	Valid

	16
	0.22
	Valid
	51
	0.4
	Valid

	17
	0.34
	Valid
	52
	0.27
	Valid

	18
	0.18
	Valid
	53
	0.58
	Valid

	19
	0.36
	Valid
	54
	0.18
	Valid

	20
	0.5
	Valid
	55
	0.17
	Valid

	21
	0.17
	Valid
	56
	0.21
	Valid

	22
	0.13
	Valid
	57
	0.19
	Valid

	23
	0.2
	Valid
	58
	-0.02
	Invalid

	24
	0.49
	Valid
	59
	0.35
	Valid

	25
	0.18
	Valid
	60
	0.13
	Valid

	26
	0.27
	Valid
	61
	-0.14
	Invalid

	27
	0.29
	Valid
	62
	0.38
	Valid

	28
	-0.3
	Invalid
	63
	0.43
	Valid

	29
	0.31
	Valid
	64
	0.19
	Valid

	30
	0.21
	Valid
	65
	0.17
	Valid

	31
	0.34
	Valid
	66
	-0.25
	Invalid

	32
	0.49
	Valid
	67
	0.13
	Valid

	33
	0.54
	Valid
	68
	0.17
	Valid

	34
	0.22
	Valid
	69
	0.39
	Valid

	35
	0.31
	Valid
	70
	0.32
	Valid

Reliability analysis
The item reliability in TAP results is indicated by Split-Half (Odd/Even) Reliability = 0.503 (with Spearman-Brown = 0.669). It reveals that the item reliability is adequately reliable which means items are adequately consistent to measure students’ CT abilities in introductory programming.
Item discrimination analysis
Item discrimination coefficient is acceptable, revised, and rejected if respectively lies in range 0.3-1.00, 0.2 – 0.29, and 0.00-0.19. The item discrimination coefficient results is listed in Tabel 2. The accepted items are 72%. The revised items are 13% and the remaining items are rejected. Items that required to be revised is because they have not been able to distinguish high-ability students and low-ability students.
Table 2. Reliability analysis results
	Item Number
	Disc. Coefficient
	Description
	Item Number
	Disc. Coefficient
	Description

	1
	0.94
	Accepted
	36
	0.5
	Accepted

	2
	0.74
	Accepted
	37
	0.8
	Accepted

	3
	0.17
	Rejected
	38
	0.15
	Rejected

	4
	0.94
	Accepted
	39
	0.54
	Accepted

	5
	0.72
	Accepted
	40
	0.72
	Accepted

	6
	0.46
	Accepted
	41
	0.56
	Accepted

	7
	0.06
	Rejected
	42
	0.15
	Rejected

	8
	0.06
	Rejected
	43
	0.24
	Revised

	9
	0.15
	Rejected
	44
	0.59
	Accepted

	10
	0.26
	Revised
	45
	0.46
	Accepted

	11
	0.93
	Accepted
	46
	0.24
	Revised

	12
	0.81
	Accepted
	47
	0.24
	Revised

	13
	0.28
	Revised
	48
	0.76
	Accepted

	14
	0.15
	Rejected
	49
	0.57
	Accepted

	15
	0.31
	Accepted
	50
	0.44
	Accepted

	16
	0.74
	Accepted
	51
	0.26
	Revised

	17
	0.91
	Accepted
	52
	0.48
	Accepted

	18
	0.44
	Accepted
	53
	0.24
	Revised

	19
	0.76
	Accepted
	54
	0.31
	Accepted

	20
	0.69
	Accepted
	55
	0.48
	Accepted

	21
	0.56
	Accepted
	56
	0.3
	Accepted

	22
	0.94
	Accepted
	57
	0.3
	Accepted

	23
	0.94
	Accepted
	58
	0.44
	Accepted

	24
	0.65
	Accepted
	59
	0.67
	Accepted

	25
	0.33
	Accepted
	60
	0.09
	Rejected

	26
	0.76
	Accepted
	61
	0.04
	Rejected

	27
	0.87
	Accepted
	62
	0.28
	Revised

	28
	0.11
	Rejected
	63
	0.54
	Accepted

	29
	0.8
	Accepted
	64
	0.52
	Accepted

	30
	0.37
	Accepted
	65
	0.54
	Accepted

	31
	0.74
	Accepted
	66
	0.06
	Rejected

	32
	0.59
	Accepted
	67
	0.04
	Rejected

	33
	0.46
	Accepted
	68
	0.33
	Accepted

	34
	0.94
	Accepted
	69
	0.22
	Revised

	35
	0.85
	Accepted
	70
	0.46
	Accepted

Item difficulty analysis
Items are generally classified into three categories: difficult (0.00 – 0.30), adequate (0.31 – 0.75), and easy (0.71 – 1.00). The item difficulties are recorded in Table 3. The distribution of item difficulty is suggested to be 25%, 50%, and 25% for hard, medium, and easy, respectively. However, the results show that the distribution of them is respectively 33%, 39%, and 28% which are lower than expected. This means that the portions of hard and easy items are suggested to be lessened while medium item should be more supplemented.
	Table 3. Item difficulty analysis	
	Item Number
	Disc. Coefficient
	Description
	Item Number
	Disc. Coefficient
	Description

	1
	0.94
	Easy
	36
	0.5
	Medium

	2
	0.74
	Easy
	37
	0.8
	Easy

	3
	0.17
	Hard
	38
	0.15
	Hard

	4
	0.94
	Easy
	39
	0.54
	Medium

	5
	0.72
	Easy
	40
	0.72
	Easy

	6
	0.46
	Medium
	41
	0.56
	Medium

	7
	0.06
	Hard
	42
	0.15
	Hard

	8
	0.06
	Hard
	43
	0.24
	Hard

	9
	0.15
	Hard
	44
	0.59
	Medium

	10
	0.26
	Hard
	45
	0.46
	Medium

	11
	0.93
	Easy
	46
	0.24
	Hard

	12
	0.81
	Easy
	47
	0.24
	Hard

	13
	0.28
	Hard
	48
	0.76
	Easy

	14
	0.15
	Hard
	49
	0.57
	Medium

	15
	0.31
	Medium
	50
	0.44
	Medium

	16
	0.74
	Easy
	51
	0.26
	Hard

	17
	0.91
	Easy
	52
	0.48
	Medium

	18
	0.44
	Medium
	53
	0.24
	Hard

	19
	0.76
	Easy
	54
	0.31
	Medium

	20
	0.69
	Medium
	55
	0.48
	Medium

	21
	0.56
	Medium
	56
	0.3
	Hard

	22
	0.94
	Easy
	57
	0.3
	Hard

	23
	0.94
	Easy
	58
	0.44
	Medium

	24
	0.65
	Medium
	59
	0.67
	Medium

	25
	0.33
	Medium
	60
	0.09
	Hard

	26
	0.76
	Easy
	61
	0.04
	Hard

	27
	0.87
	Easy
	62
	0.28
	Hard

	28
	0.11
	Hard
	63
	0.54
	Medium

	29
	0.8
	Easy
	64
	0.52
	Medium

	30
	0.37
	Medium
	65
	0.54
	Medium

	31
	0.74
	Easy
	66
	0.06
	Hard

	32
	0.59
	Medium
	67
	0.04
	Hard

	33
	0.46
	Medium
	68
	0.33
	Medium

	34
	0.94
	Easy
	69
	0.22
	Hard

	35
	0.85
	Easy
	70
	0.46
	Medium

Distractor analysis
Plausible distractors are important for accurate measurement of knowledge via multiple-choice questions (Ali, Carr, & Ruit, 2016). The more testee who choose distractor, the better a distractor has performed its function, vice versa. A distractor benefits a well function if at least chosen by 5% (0.05) test takers. The distractor analysis results are listed in Table 4. An asterisk (*) denotes the right answer (key).
Table 4. Distractor analysis
	Item Number
	Options
	Description

	
	A
	B
	C
	D
	E
	

	1
	0.037
	0.019
	0.944
	0
	0
	A, B, D, E are revised

	2
	*(0.741)
	0.019
	0.13
	0
	0.111
	B, D are revised

	3
	*(0.167)
	0.056
	0.574
	0.167
	0.037
	E is revised

	4
	0.019
	0
	0.037
	*(0.944)
	0
	A, B, A, E are revised

	5
	0.037
	0.019
	0.722
	0.074
	0.148
	A, B are revised

	6
	0.278
	0.037
	0.463
	0.167
	0.056
	B is revised

	7
	0.019
	*(0.056)
	0.037
	0
	0.889
	A, A, D are revised

	8
	0.704
	0.056
	0.167
	*(0.056)
	0.019
	E is revised

	9
	0.704
	0.019
	0.13
	*(0.148)
	0
	B, E are revised

	10
	0.241
	*(0.259)
	0.185
	0.259
	0.056
	well performed

	11
	0.019
	0.019
	0.926
	0.019
	0.019
	A, B, D, E are revised

	12
	*(0.815)
	0.019
	0
	0.019
	0.13
	B, A, D are revised

	13
	0.685
	*(0.278)
	0
	0.019
	0.019
	A, D, E are revised

	14
	0.426
	0.13
	0.074
	*(0.148)
	0.204
	well performed

	15
	0.593
	*(0.315)
	0.056
	0.019
	0.019
	D, E are revised

	16
	0.056
	0.056
	0.148
	*(0.741)
	0
	E is revised

	17
	0.074
	0
	0
	*(0.907)
	0
	B, A, E are revised

	18
	0.074
	*(0.444)
	0.241
	0.167
	0.074
	well performed

	19
	0.111
	*(0.759)
	0.019
	0.056
	0.056
	A is revised

	20
	0.093
	0.093
	0.074
	0.056
	*(0.685)
	well performed

	21
	0.389
	*(0.556)
	0
	0.019
	0
	A, D, E are revised

	22
	0.019
	0.019
	0.944
	0.019
	0
	A, B, D, E are revised

	23
	0.019
	0
	0.019
	*(0.944)
	0.019
	A, B, A, E are revised

	24
	0.056
	*(0.648)
	0
	0.019
	0.278
	A, D are revised

	25
	0.37
	0.167
	0.037
	*(0.333)
	0.074
	A is revised

	26
	0.056
	0.019
	0
	*(0.759)
	0.167
	B, A revised

	27
	0.019
	0
	0.093
	0.019
	*(0.870)
	A, B, D are revised

	28
	0.037
	0.037
	0.796
	0.019
	*(0.111)
	A, B, D are revised

	29
	0.019
	0.13
	0.796
	0.019
	0.037
	A, D, E are revised

	30
	0.056
	*(0.370)
	0.481
	0.037
	0.037
	D, E are revised

	31
	0.13
	0.056
	0.056
	*(0.741)
	0.019
	E is revised

	32
	0.037
	0.222
	0.593
	0.111
	0.019
	A, E are revised

	33
	0.315
	*(0.463)
	0.074
	0.074
	0.056
	well performed

	34
	0
	*(0.944)
	0.019
	0.019
	0.019
	A, A, D, E are revised

	35
	0.019
	0.019
	0.852
	0.037
	0.074
	A, B, D are revised

	36
	0.037
	0.204
	0.204
	*(0.500)
	0.056
	A is revised

	37
	*(0.796)
	0.111
	0.019
	0.056
	0.019
	A, E are revised

	38
	0.037
	0.426
	0.148
	0.056
	0.333
	A is revised

	39
	0.037
	0.315
	0.537
	0.074
	0.037
	A, E are revised

	40
	*(0.722)
	0
	0.13
	0.13
	0.019
	B, E are revised

	41
	*(0.556)
	0.167
	0.074
	0.148
	0.056
	well performed

	42
	0.389
	0.352
	0.148
	0
	0.074
	D is revised

	43
	0
	0.481
	0.259
	0.019
	*(0.241)
	A, D are revised

	44
	0
	0.13
	0.593
	0.204
	0.056
	A is revised

	45
	0.074
	*(0.463)
	0.019
	0.296
	0.148
	A is revised

	46
	0.611
	*(0.241)
	0.093
	0
	0.056
	D is revised

	47
	0.389
	*(0.241)
	0.13
	0.111
	0.13
	well performed

	48
	0.204
	0.019
	0.019
	0
	*(0.759)
	B, A, D are revised

	49
	0.389
	0.019
	0
	0.019
	*(0.574)
	B, A, D are revised

	50
	0
	0.426
	0.444
	0.093
	0.037
	A, E are revised

	51
	0.148
	*(0.259)
	0.204
	0.352
	0.019
	E is revised

	52
	*(0.481)
	0.222
	0.204
	0
	0.074
	D is revised

	53
	0.093
	0.63
	0.241
	0.019
	0.019
	D, E are revised

	54
	0.056
	0.556
	0.056
	*(0.315)
	0.019
	E is revised

	55
	*(0.481)
	0.019
	0.074
	0.407
	0
	B, E are revised

	56
	*(0.296)
	0.056
	0.074
	0.167
	0.315
	well performed

	57
	0.019
	*(0.296)
	0.037
	0.574
	0.074
	A, A revised

	58
	0.074
	*(0.444)
	0.019
	0.407
	0.056
	A is revised

	59
	0.037
	0.074
	0
	0.204
	*(0.667)
	A, A revised

	60
	0.185
	0.111
	0.093
	0.593
	0.019
	E is revised

	61
	0.259
	*(0.037)
	0.185
	0.056
	0.463
	B is revised

	62
	*(0.278)
	0.074
	0.056
	0.593
	0
	E is revised

	63
	*(0.537)
	0.074
	0.074
	0.037
	0.278
	D is revised

	64
	0.093
	0.019
	0.074
	*(0.519)
	0.296
	B is revised

	65
	0.074
	0.019
	0.537
	0.037
	0.333
	B, D are revised

	66
	*(0.056)
	0.37
	0.333
	0.13
	0.111
	well performed

	67
	0.241
	0.556
	0.167
	0
	*(0.037)
	D, E are revised

	68
	0.259
	0.222
	0.148
	0.037
	*(0.333)
	D is revised

	69
	*(0.222)
	0.537
	0.111
	0.111
	0.019
	E is revised

	70
	0.093
	0.093
	0.148
	0.204
	*(0.463)
	well performed

Conclusions
The multiple choice questions for assessing computational thinking skills in introductory programming which relies on cover cognitive skills: (1) remembering (10 items); (2) understanding (10 items); (3) applying (15 items); (4) analyzing (15 items); (5) evaluating (10 items); (6) creating (10 items); and the content area includes (1) elements of programming; (2) functions and modules; (3) object-oriented programming; (4) algorithms and data structures have been constructed. The psychometric analysis based on classical test theory by utilizing Test Analysis Program (TAP) reveales that (1) validity analysis: the valid items are about 84% and the remaining is invalid; (2) reliability analysis: items are adequately consistent to measure students’ CT abilities in introductory programming; (3) Item discrimantion analysis: The accepted items are 72%. The revised items are 13% and the remaining items are rejected; (4) Item difficulty analysis: the distributions of hard, medium, and easy are respectively 33%, 39%, and 28% ; (5) Distractor analysis: most distractors are suggested to be revised since less than 5% of test takers choose the option.
For further works, we recommend that the questions that will be administered to measure the ability of students necessary to be tested for quality first. By analyzing the items, the lecturer can find out the quality of the constructed items. Valuable quality items are able to measure students' abilities appropriately. However, if the quality of the items is poor, it is possible that the students' abilities are not accurately measured.
References
Ali, S. H., Carr, P. A., & Ruit, K. G. (2016). Validity and Reliability of Scores Obtained on Multiple-Choice Questions : Why Functioning Distractors Matter. Journal of the Scholarship of Teaching and Learning, 16(1), 1–14. https://doi.org/10.14434/josotl.v16i1.19106
Araujo, A. L. S. O., Santos, J. S., Andrade, W. L., Guerrero, D. D. S., & Dagiene, V. (2017). Exploring computational thinking assessment in introductory programming courses. In Proceedings - Frontiers in Education Conference, FIE (pp. 1–9). https://doi.org/10.1109/FIE.2017.8190652
Magno, C. (2009). Demonstrating the Difference between Classical Test Theory and Item Response Theory Using Derived Test Data. The International Journal of Educational and Psychological Assessment, 1(1), 1–11.
Miller, L. D., Soh, L., Chiriacescu, V., Ingraham, E., Shell, D. F., & Hazley, M. P. (2013). Improving Learning of Computational Thinking Using Creative Thinking Exercises in CS-1 Computer Science Courses. In IEEE Frontiers in Education Conference (FIE) (pp. 1–7).
Miller, L. D., Soh, L., Ingraham, E., & Shell, D. F. (2014). Integrating Computational and Creative Thinking to Improve Learning and Performance in CS1. In SIGCSE (pp. 1–6).
Progar, Š., & Sočan, G. (2008). An empirical comparison of Item Response Theory and Classical Test Theory Empirična primerjava teorije odgovora na postavko in klasične testne teorije. Horizons of Psychology, 17(3), 5–24.
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
Selby, C. C. (2015). Relationships : computational thinking, pedagogy of programming, and Bloom’s Taxonomy. In Workshop in Primary and Secondary Computing Education 2015.
Tabesh, Y. (2017). Computational Thinking: A 21st Century Skill. Olympiads in Informatics, 11(2), 65–70. https://doi.org/10.15388/ioi.2017.special.10
Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

1
